
- -~ft~~ms , //CMU-CS--79-111

Jon Lotis Sutn'oy
Dicpartnentst of Computer Sciarica and M&{Vnertkc

Pittsburgh, PeninsyIci~a 15213

4f- wErm W. Weide
Dapiwtm~rtt of Comrputer' anid Inform. 3iort Sciance

Cný The Ohio State Univer~ity
4c Cclumbii, Ohio 43210

Andrew C.. Yza
Compuler Sciemnc DepartmeMt

Stanford Urlversity
Stanford, California 94305

CDO'

DEPARTMENT R

of I u

COMPUTER SCIENCE

CAar.negie eI Ion nv;ý-a
79f- 0 4- OZ- 012-

CMU-CS-79-111

OPTIMAL EXPECTED-TIME ALGORITHMS FOR CLOSEST-POINT PROBLEMS

Jon Louis Bentley
Departments of Computer Science and Mathematics

Carnegie-Mellon University
Pittsburgh, Pennsyl,' ania 15213

Bruce W. Weide
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

Andrew C. Yao
Computer Science Department

Stanford University
Stanford, California 94305

Abstract

Geometric closest-point problems deal with the proximity relationships in k-dimensional

point sets. Examples of closest-point problems include building minimum spanning trees,

.earest neighbor searching, and triangulation construction. Shamos and Hoey [1975] have

shown how the Voronoi diagram can be used to solve a number of planar closest-point

problems in optimal worst-case time. In this paper we ex t end their work by giving optimal

expected-time algorithms for solving a number of closest-point problems in k-space, Including

nearest neighbor searching, finding all nearest neighbors, and computing planar minimum

spanning trees. In addition to establishing theoretical bounds, the algorithms In this paper

can be implemented to solve practical problems very efficiently.

This research was supported in part by the Office of Naval Research under Contract

N00014-76-C-0370 and in part by the National Science Foundation tinder Grant

MCS-77-05313.

SA_
N~

L

3 March 1979 Optimal Expected-Time - i -

Table of Contents

1. Introduction 1
2. Nearest Neighbor Searching 2

3. The Voronoi Diagram 6

4. Extensions of the Planar Algorithms 9

5, Extensions to Higher Dimensions 10

6. Implementation Considerations 11

7. Conclusions 14

ACc ON[fo, Qr

NTIS W.:- S.-tIon
IKY ~ .4* se'niDIn

UNANYO]I~D 0

..............................

By

%ISjAVNJMW CODES

0 CI-J

i1
I;,

3 March 1979 Optimal Expected-Time -1-

1. Introduction

Shamos and Hoey (1975] have collected together and s;udied a group of problems in

computational geometry that they refer to as closest-point problems. Problems in this set are

usually defined on point sets in Euclidean space and include such computational tasks as

nearest-neighbor searching, finding all nearest-neighbor pairs, and constructing Voronol

diagrams. The merits of studying these problems as a set have been proven repeatedly since

the class was first defined. Not only do the various problems often arise in the same

application areas, but time and again we have seen that advances mado in the computational

efficiency of an algorithm for one of the problems can be applied to increase the

computational efficiency of others. In this paper we continue in this spirit by showing how

the technique of "cells" can be used to produce optimal expected-time algorithms for many

closest-point problems.

All of the closest-point problems that we will study in this paper have as input a set S of n

points in Euclidean k-space. The nearest-neighbor searchingr problem calls for organizing the

set S into a data structure such that cubsequent queries asking for the nearest point in S to

a new point can be answered quickly. The aU nearest neighbors problem is similar: it calls for

finding for each point in S its nearest neighbor among the other points of S. Both of these

problems arise in statistics, data analysis and information retrieval. A problem similar to the

nearest neighbor problems is that of finding the closest pair in a point set: that pair of

points realizing the minimum interpoint distance in the set. The minimum spanning tree (or

MST) problem calls for finding a tree connecting the points of the set with minimum total

edge length. This problem arises in statistics, image processing, and communication and

transport networks. The most complicated closest-point problem that we will investigate in

this paper is the problem of constructing the Voronoi diagram of a point set. This problem,

along with its applications, is described in Section 3. All of the problems that we have just

mentioned are described in greet detail by Shamos (1978]; he also discusses many of their

applications.

Much previous work has been done on closest-point problems. The seminal paper in this

field is the classic work of Shamos and Hoey (1975] in which the problems are defined and a

number of optimal worst-case algorithms for planar point sets are given. Algorithms for

closest-point prob!ems in higher-dimensional spaces have been given by Bentley [1976], A.

Yao (1977], and Yuval [1976], Randomized algorithms for the closest-pair problem have been

given by Rabin L1976) and Weide [19/8J1 Fortune and Hopcroft (1979) have recently shown

that the speedup of the fast closest-pair algorithms was not due to their randomized nature

alone but also to the model of computation employed (which allowed floor functions). For

3 March 1979 Optimal Expected-Time 2 -

additional results or, closest-point problems the reader is referred to Preparata and Hong

[1977] kind Lipton and Tarjan (19771

In this paper we study closest-point problems from a viewpoint not taken in a&ny of the

above papers. We assume that the point sets are randomly drawn from some "smooth"

underlying distribution, and then use the cell technique to give fast expected-time algorithms

for many closest-point problems. In Sections 2 and 3 we illustrate this idea by applying it to

two fundamental closest-point problems (nearest -neighbor searching and Voronoi diagram

construction) under the very restrictive assumption that the points are drawn uniformly from

the unit square. In Section 4 we extend these results to oiher planar closest-point problems

and to point sets drawn from a wide class of distributions. In Section 5 we extend our

algorithms to problems in Euclidean k-space. Most of the algorithms we present solve a

problem on n inputs in expected time proportional to n ard all searching structures we give

have constant expected retrieval time; these results are therefore optimal by the trivial lower

bounds. Having thus resolved the primary theoretical issues, we turn to implementation

considerations in Section 6. Conclusions and directions for further research are then offered

in Section 7.

2. Nearest Neighbor Searching

The problem that is easiest to state and most clearly illustrates the cell method is

nearest-neighbor searching, sometimes called the post office problem. Given n points in

Euclidean space, we are asked to preprocess the points in time P(n) in such a way that for a

new query point we can determine in time Q(n) which pc.nt of the original set is closest to it.

There are (complicated) structures available for solving the problem with P(n) - O(n log n)

and Q(n) - Q(log n) in the worst case (Lipton and Tarjan (1977]), but one might expect that on

the average we can do better. In fact we will see that for a large class ot distributions of

points, the expected values of P(N) and Q(n) can be made to be O(n) and 0(1), respectively.

Although we will initially restrict our 0ttention to this apparently simple problem (and the

planar case at that), the techniques used also apply to other closest point problems, which we

will investigate in later sections.

We first consider the problem of nearest neighbor searching In the plane, where the points

(both the original n oolnt.; and the query point) are chosen Independently from a uniform

distribution over the unit square. The Idea of the preprocessing step Is to assign each point

to a small square (bin or c.U) of area C/n, so that the expected number of points in each bin

is C. This is easily done by creating ani array of size (n/C)11 2 by (n/C)1 / 2 that holds

pointers to the lists of points in each bin.

A

3 March 1979 Optimal Expected-Time -3-

When a query point comes in, we search the cell to which it would be assigned. If that cell

is empty, then we start searching the cells surrounding it in a spiral-like pattern until a point

is found. Once we have one point we are guaranteed that there is no need to search any bin

that does not intersect the circle of radius equal to the distance to the first point found and

centered at the query point. Figure 1 shows how the spiral search might prnceed for the

query point in the middle of the circle. Once the point in the northeast neighbor is found,

only bins intersecting the circle must be searched. Each of these is marked with an x in

Figure 1. In order to maka this test easy, we suppose that all bins that lie within that

distance of the query point in either coordinate are examined, making the number of cell

accesses slightly larger than necessary but simplifying the specification of how the

appropriate bins are to be found.

X x

x x X x
x x X

Figure 1. Spiral nearest neighbor search using cells.

It is clear that preprocesling, which consists of assigning each point to the appropriate bin,

can be accomplished in linear time if computation of the floor function in constant time is

allowed. This assumption is necessary to solve most of the ctosast point problems in o(n Log n)

time because Lower bounds proportiona•L to n log n are known for many of them in the

"decision tree with Linear functions" model of computation. The following theorem shows that

spiral search is indeed a constant-time solution to the nearest neighbor searching problem.

Theorem I - If n points are chosen independently from a uniform distribution
over the unit square, then spiral search finds the nearest neighbor of a query
point after examining only an expected constant number of the other points.

Proof - Certain notation is required in this proof. We will first define the concept of layers

of cells surrounding the query point. We say that the cell containing the query point iu In

N=

3 March 1979 Optimal Expected-Time -4-

layer 1, the eight cells surrounding that are in layer 2, the sixteen cells surrounding those

are in layer 3, and so on. In general, for any k z 1, the k-th layer contains exactly 8(k-1)

cells and there are (2k-3) 2 ý, 4k2 cells on or within layer k. We will elso use in our proof the

constant

q - C/n.

Since the number of cells in the structure is n/C, q can be thought of as the probability of a

point being placed in a certain fixed cell. We are now equipped to proceed to the statistical

arguments required to prove Theorem 1.

Let Pij be the probability that the first i cells probed by the search are empty and the

(i+1)-st cell contains exactly j points. Simple combinatorial arguments show that

- (p qj (I - (I+),]n-j.

Since the (i+1)-st cell examined can be at most in the k - (1 / 2 +1)-st layer, one need search

a total of at most 4k 2 < (121+4) cells, or I i+3 beyond the original i+1 searched. The

expected number of points in each cell beyo•nd the origir,al 1+1 is (n-j)/[(/q - (i+1).

Combining these counting arguments shows that the expected number of points examined, m,

is bounded above by

n-i j

O0:50 1 <j:5n

where t - n/C - I (one less than the total number of cells). Rearranging this expression

yields

O•;i:St 5J:5n 1:51:5n

Wo will now use the binomial theorem and other basic combinatorial identities to expand

the two inner sums of the above expression, yielding

1Elj' I lnj q [I -(I qm-
- I () qk [I - (i+1)q,]n-IA

-nq (1 -iq)n"

and

3 March 1979 Optimal Expected-Time -b -

S(n-j) " - (n-j)(i) qJ [1-(i+I•I~n'li
15jsn lISjn

W M - (Vn-1) qj [_(.+1)q]n.l.j

= n(I-iq)nI - n[1 - (i+j)q]nlo,

Substituting these sums back into the rearranged bound on m gives

m •;nq (1-iq)n-I + (111+3)(1-iq~n-I - (Q1i+3)[(_(I1)q]n-l)

nq (11i+4)[1-iq]n-I - (011+3) [1-(il+)q]n' I

< nq 0 (lIi+4) (-iq)fn'l

:Snq _0• (i+4) e-i(n-l•q

C (;Z1t()i+4) 6 -C(I-1/n)i

0(1). I]

Note that this proof is valid for any given point in the unit square. The programming of the

spiral search, however, must behave properly when cells on the boundary of the unit square

are being examined. This argument shows that the expected number of points examined by

the spiral search is bounded above by a constant. Similar arguments can be used to show

that the expected number of cells examined is also bounded above by a constant. Since

those are the only two time-consuming operations in a spiral search, we have have shown

that the expected running time of spiral search is bounded above by a constant, independent

of the value of n.

Although the proof of Theorem I Is rather tedious, the theorem itself can be easily

understood on an intuitive level. Phrased very briefly, nearest neighbors are a local

phenomenon, and so are cells. The following is a lengthier but more graphic illustration.

Suppose you were standing in the middle of a large hall that is covered with tiles that are

one-foot by one-foot square; suppose furthermore that the hall has been sprinkled uniformly

with pennies, so that there are about a dozen pennies per tile, on the average. How many

feet out will you have to look before you find the penny nearest you? Your answer will be

independent of the size of the hall, because the density of pennies Is the critical Issue, and

3 March 1979 Optimal Expected-Time -6-

not their absolute number--whether the hall is one hundred feet square or one mile square is

immaterial. This Is exactly the phenomenon we exploit in nearest neighbor searching by

ensuring that there are a constant number of points per cell on the average.

We will now apply the cell method to a number of other closest-point problems. Although

the formal proofs of the algorithms will all have the rather complicated structure of the proof

of Theorem 1, the reasons why the algorithms perform efficiently all come back to the same

principle: closest-point problems investigate local phenomena, and cells capture locality.

3. The Voronoi Diagram

The Voronoi digram of a point set is a device that captures many of the closeness
poperties necessary for solving closest-point problems. For any point x in a set S the

Voa-oioi polygon of x is defined to be the locus of all points that are nearer x than any other

point in S. Notice that the Voronoi polygon of point x is a convex polygon with the property

that any point lying in that polygon has x as its nearest neighbor. The union of the edges, of

all the Voronoi polygons in a set forms the Voronoi diagram of the set. A planar point set

and its Voronoi diagram are illustrated in Figure 2. The Voronoi diagram has many fascinating

properties that are quite useful computationally. We already mentioned the fact that the

nearest neighbor to a new point is that point whose Voronoi polygon contains the new point.

This fact can be used to give a fast worst-case algorithm for nearest neighbor searching.

Another interesting property of the Voronoi diagram is the fact that the duaL of the diagram

(that is, the graph obtained be connecting all pairs of points that share an edge in their

respective Voronoi polygons) iz a supergraph of the minimum spanning tree of the set and,

furthermore, the dual contains at most 3n - 6 edges. These and many other properties of the

Voronoi diagram are discussed by Shamos [1978].

3 March 1979 Optimal Expected-Time -7 -

0

Figure 2. A point set and its Voronoi diagram.

The problem of constructing the Voronoi diagram of a planar point set is somewhat more

delicate than nearest-neighbor searching. For each point, we will compute its Voronoi

polygon by listing its edges together with the associated Voronoi neighbors In clockwise

order. We will show that this can still be accomplished in linear expected time under the

same assumption of point sets drawn from a bivariate uniform distribution. The basic idea is

to search all cells in a relatively small neighborhood of each point in a spiral-like fashion until

at least one point is found in each vf the eight octants shown in Figure 3, or we give up

having examined O(log n) cells. The tentative Voronol polygon of the center point Is that

determined by considering just those eight points. Let d be the distance from the center

point to the farthest point of its tentative Voronoi polygon. Then no point farther than 2d

from the center point can have any affect on the actual Voronol polygon of that point, which

means that the Voronoi polygon of such a point can be constructed by considering only the

few (expected constant) number of points which are in the circle of Figure 3.

3 March 1979 Optimal Expected-Time

0/

o0

*

Figure 3, Construction of Voronoi polygon.

In the case that there is at least one point found in each oclant before the O(log n) cells

are searched, the point is called a closed point. A spiral search can be used to determine

whether or not a given point is closed in constant expected time, and for a closed point its

Voronoi polygon can then be computed in constant expected time. This can be proved by

slightly modifying the proof of Theorem 1. The function pij in that proof remains the same;

the only change is in the number of cells that need be searched if the point is found in the

i-th cell. Performing the above operations on all points allows us to identify all closed points

and compute their Voronoi polygons in linear expected time.

All points in the set that are not closed are called open points (note that most of these are

near the boundary of the point set). Using methods similar to those of the proof of Tf 'orem

1, it can be shown that the expected number of open points is O((n log n) 1 / 2). Since each

open point is identified in O0log n) steps, the total work required to identify all of the open

points is O(nl/ 2 1og 3 / 2 n). Once the Voronoi polygons of the closed points are constructed

and the open points are identified (all of which takes linear expected time) we are left with

the problem of computing the Voronoi polygons of the open points. This is accomplished by

applying the O(n log n) Voronoi diagram algorithm of Shamos and Hoey [1975] to the set of

open points plus the set of closed points that are Voronol neighbors of some open point. The

expected size of this set is O((n log n)1/ 2), so the expected time required by the O(n log n)

worst-case algorithm is O(n 1 / 2 1og 2 / 2n). This computes the Voronoi polygons for the open

points, and completes our description of a linear expected-time algorithm for constructing the

Voronoi diagram.

3 March 1979 Optimal Expected-Time -9-

4. Extensions of the Planar Algorithms

'he algorithms of Sections 2 and 3 can be used to solve a number of planar closest-point

problems. Given the fast nearest-neighbor searching algorithm we can eas'ily solve the au

nearest-neighbors problem (which calls for finding the nearest neighbor of each point) in

"linear expected time, for point sets drawn from uniform distributions. This is ccromplished by

preprocessing the n points in linear time and then doing n searches, each of expected

. constant cost. Or':e we have found all nearest neighbors we can easily find the closest pair

in the set by taking the minimum of the n distances. Shamos and Hoey [1975] have shown

that once we have constructed the Voronoi diagram of a point set we can solve many other

problems in linear wor.t-case time. Together with the Voronoi diagram algorithm of Section 3

this allows us to solve both the minimum spanning tree and Delatsnay triangulation problems

in linear expected time. The details of these algorithms, together with some of the

"applications areas in which they arise, are discussed by Shames (19781

All of the results that we have described so far are valid only for point sets drawn

uniformly on the unit square; the algorithms can easily be adapted to work for many known

distributions of points. The extension of these results to unknown distributions is a bit

tricky. If we proceed for such a distribution as though it were uniform over some bounded

region, a query can still be answered in constant expected time under certain conditions. The

cells are chos.en by first fioiding the minimum and maximum values in both x and y and then

partitioning the rectangle defined by those four values into a number of squares proportional

to n. The resulting cells can be represented by a two-dimensional array and our previous

algorithms can operate as before. The only restriction on the underlying distribution

required to achieve constant expected time is %'hat it satisfy a condition similar to but more

restrictive than a Lipschitz condition.

Theorem 2 - Let n points be chosen independently from the distribution F(x,y)
over a bounded convex region in the plane, where F satisfies the condition that
there exist constants O<Cl_<C 2 such that for any region of area A, the probability
assigned to A by F lies between C A and C2A. (Alternatively, F has a density with
respect to Lebesgue measure that is bounded above and bounded below away
"from zero.) Then the same algorithm that was used for nearest neighbor searching
in the uniform case answers a query in constant expected time.

Sketch of Proof - The proof of Theorem I can be easily modified to prove this theorem.

The requirement that the distribution be over some bounded convex region of the plane

ensures that some constant proportion of the cells will be used to contain points of the

distribution, and the expected number of points per cell will therefore be bounded .bove and

below by constants. The lower bound on density, C1, guarantees that the expected number

3 March 1979 Optimal Expected-Time 10 -

of layers that need be examined before a point is found is small, and the uppor bound C2

guarantees that not many points will be in the neighboring cells when they are investigated.

With these details in mind, the modification of Theorem 1 Is straightforward. One can even

use the same technique to prove a stronger version of Theorem 2--the requirement that the

region be convex can be weakened to include non-convex regions with "sufficiently umooth"

boundaries, where "sufficiently smooth" is given a precise technical meaning. I0

Similar arguments show how the above ,)ethods can be applied to give linear

expected-.time algorithms for all of the closest-point problems mentioned above, when the
point sets satisfy the conditions of Theorem 2.

5. Extensions to Higher Dimensions

In the previous section we showed how the algorithms of Section 2 and 3 can be used to

solve a number of problems with inputs drawn from a wide variety of planar distributions$ in

this section we will see how the basic results can be extended to solve closest-point
problems In k-dimensional space. If the point sets are drawn independently and uniformly

from the unit hypercube (that is, [0, I]k), then we can use the cell technique by dividing the

hypercube into n/C cells, each of side (C/n)l/k.

The first closest-point problem in k-space that we will examine is that of nearest neighbor

searching. Dobkin and Lipton [1976] showed thoit a nearest neighbor to a new point can be
found in worst-case time proportional to k log n; their method requires preprocessing and

storage prohibitive for any practical application, however. Friedman, Bentley and Finkel
(1977] have described an algorithm with expected search time proportional to log n that has

very modest preprocessing and storage costs. We will now examine a cell-based method for

nearest neighbor searching that yields constant expected retrieval time. The preprocessing

phase of the algorithm consists ol placing the points into cells in k-space as described c-bove.
To perform a nearest neighbor search we generalize the spirxM search of Section 2, starting

at the cell holding the query point and searching outwards until we find a non-empty cell. At

that point we must search wit cells that intersect the ball centered at the query point with

radius equal to the dist2nce to the nearest neighbor found so far. Arguments simllr to those
used in Section 2 can be used to show that the expscted work performed in this search is

constant. Once we nave this result we can solve buth t'ho all nearest neighbors and closest

pair problems in linear expectscd tUme.

The k-dimensional minimum spathning tree problem calls for finding a spanning tree of the

point set of minimum, total edge length. Straightforward algorithms for this task require O(r••)

time. A. Yao [1977] has 6hown that there is a subquadratic worst-case algorithm for solving

3 March 1979 Optimal Expected-Time - 11 -

this problem, but his algorithm is probably slower than the straightforward method for most

pru'ctical applications. Practical algorithms for this task have been proposed by Bentley and

Friedman (1978] and Rohlf (19783, but the analysis of those algorithms remains primarily

empirical. We will now inve3tigate the use of the cell technique to solve this problem in fast

expected time. We use the me thod of A. Yao [1977], which calls for finding the nearest

neighbor of each of the n points in each of some critical number of generalized orthants. Yao

has shown that the resulting graph is a supergraph oi the minimum spanning tree of the point

set. Since that graph contains a number of edges linear in n (for any fixed dimension k), the

minimum spanning tree can be found in O(n log log n) time (see Yao [1975] or Cheriton rnd

Tarjan [1976]). Because the "nearest neighbor in orthant" searching can be accomplished in

constant expected time for each point, the total expected running time oi this algorithm is

O(n log log n).

It appears to be a very difficult task to use the cell method to construct k-dimensional

Voronoi diagrams in fast expected time. Generalizing the method of Section 3 allows us to

find the Voronoi polytopes of all closed points in linear expected tme, but at thai point there

still remain O((n log n)I-l/k) open points. Since no fast algorithms are known Ior

constructing Voronoi diagrams in k-space, it is not clear how to find the true Voronoi diagram.

Notice, however, that we have found the Voronoi polytopes of an inrtreasing fraction of the

points (that is, the ratio of open points to n approaches zero as n grows). This technique can

be used for "Voronoi polytope searching", which asks for the actual Voronoi polytope

containing the query point--our method will succeed in constant time with probability

approaching one.

The algorithms we have described above have all been for points drawn uniformly in

[0, 1]k. Methods analogous to those used in Section 4 can be used to show that the

algorithms can be modified to work for point sets drawn from any distribution over some

bounded convex region with density bounded above and away from zero.

6. Implementation Considerations

In this section we will discuss the implementation of the algorithms described in the

preceeding sections. The algorithms in those sections share a common structure: in the first

phase the points are stored in cells and in the second phase additional processing is done on

the points. The implementation of the first phase is trivial. Points can be placed in cells by

first finding the cell number (accomplished by a multiplication for scaling and a floor function

to find the integer cc:l index) and then performing an array index. The difficulty of the

second phase of processing will depend on the particular problem being solved. In the case

of nearest neighbor searching all that is required Is a "spiral search' and some distance

3 March 1979 Optimal Expected-Time -12 -

calculations; both of these are easy to implement. For the Voronoi diagram, however, the

second phase of processing is very complicated. One advantage of the locality Inherent in

closest-point problems is that very slow algorithms may be used to perform the operations

that take place in a local area; this will increase the constant of linearity, but will not slow the

asymptotic running time of the algorithms.

It. is Important to mention one coaveat that will be inherent to any application of the cell

technique: the constant of linearity of most algorithms based on this method will Increase

exponential~y with the dimension of the space, k. This is true simply because a cell in

k-space has 3 k- 1 neighbor cells. It seems, though, that this complexity might be inherent to

any algorithm for solving closest-point problems because a point in a high-dimensional space

can have many "close" neighbors. (More precisely, the maximum "adjacency" of point sets in

k-space can be equated with the number of sphere touchings, which grows exponentially with

k.) The practical outgrowth of this observation is that the methods we have described will

prove impractical for large k; we estimate that this will happen somewhere for k between five

and ten for data sets of less than ten thousand points. Data analysts observed this

phenomenon long ago and refer to it as "the curse of dimeosionality".

Weide [1978] has described how the empirical cumulative distribution function can be used

to decrease the constants of the running times of programs based on cell techniques. We will

now briefly discuss the application of his techniques to the case of planar nearest-neighbor

searching. If the points to be stored for nearest-neighbor searching indeed come from a

uniforrm distribution on [0,1]2, then the cell technique performs very well. If the points come

from a distribution that is not uniform (but still "smooth" enough to satisfy the requirements

of Theorem 2), then the cells might perform poorly in the sense of being too large (in dense

regions of the plane) or too small (in sparse regions). We would therefore like the cello to

adapt their size in different regions of the space. One approximation to this "adaptive"

behavior can be achieved with the cell method by incorporating a "conditioning pass" that

examines the distribution before the points are placed in cells. This pass might work by

finding the 1O-th, 20-th, ..., 90-th percentile points in both the x and y marginal distributions.

Each set of nine points partitions its dimension into ten "slabs", and the cross product

partitions space into one hundred rectangles. Figure 4 illustrates such a partition of a

heavily central distribution, such as a bivariate normal truncated at three standard deviations

(where 6 points are sampled in each marginal, creating 49 iectangles). For most distributions

satisfying the conditions of Theorem 2, the distribution of points within each rectangle will be

much smoother than the distribution over the entire space. Because we sampled only &

constant number of points in each dimension, we can locate which rectangle to examine In a

nearest neighbor search in constant time. The exact number of rectangles to be used

depends critically on the "roughness" of the underlying distribution--the smoother the

3 March 1979 Optimal Expected-Time - 13 -

distribution, the fewer sample points required. These and other adaptation techniques are

discussed in detail by Welds [19781

- 4d- 4. -- 1- t -- . --- I"

I I I I I I I

I I I i I I I

"-I- T -i- I - I- T-- TI I I I I I I

Figure 4. Adapting celh sizes by sampling marginais.

Although the searching structures that we have described in this paper are inherently

static, they can be modified to become dynamic. We will first consider the case in which the

nearest-neighbor structure is initially empty and then must support a series of Insert and

Search operations. We will use a method to convert our cell structure from static to dynamic

that is similar to a method described by Aho, Hopcroft and Ullman [1974, p. 113] for

converting a static hash table into a dynamic one. The nearest neighbor structure is initially

defined to have a maximum allowable size of (say) eight; we will call this size Max. When a

now point is inserted into the structure, it is merely appended to the list of points currently

in Its cell. Whenever an insertion causes the number of points currently in the structure to

exceed Max we perform the following operations: Max is set to twice its current value, a

new structure of Max/C cells is created, and the points currently stored in the structure are
"re-inserted" into the new structure. Note that for any distribution satisfying the conditions

of Theorem 2, the expected number of points Fer cell is always bounded above and below by

constants. Furthermore, analysis shows that the total amount of computation required to

insert n elements into this structure is proportional to n. (Whenever a structure of size m is

rebuilt, it is because m/2 points were inserted, so the "amortized" cost per point is constant;

for a more formal analysis, sen Aho, Hopcroft and UlIman [1974].) Monier [1978] has

3 March 1979 Optimal Expected-Time - 14 -

described a related technique that allows a hash table to support both insertions end

deletions intermixed with queries. We can usa his idea to give dynamic structures for all of

the searching problems discussed in this paper with the following properties: a sequence of

n insertions and deletions can be performed in time proportional to n, at any point in this

sequence it is possible to perform a search in constant expected time, and the storage used

by the struciure is always proportional to the number of elements currently stored.

In the above discussion we have described a number of rather exotic extensions to the

basic structures of this paper. For many applications, however, the basic structure is all that

is needed. We will therefore conclude this section on implementation by mentioning our

experience in implementing the nearest neighbo. searching algorithm for point smts drawn

uniformly on [0,112. The implementation in Fortran required approxImately 35 lines of code

to insert the points into the bins and 40 lines of code to accomplish the spiral search. The

observed running times of the resulting routines were respectively linear and constant, as

predicted, with very low overhead.

7. Conclusions
In this paper we have seen a number of algorithms for solving multidimensional

closest-point problems. The algorithms were all based on the simple idea of cells, and were

analyzed under the assumption that the points were drawn from some underlying "smooth"

distribution. All of the searching methods we described have linear preprocessing costs and

co.,stant expected searching costs; all of the algorithms (with the exception of k-dimensional

minimum .,panning trees) have linear expected running time. It is clear that these algorithms

achieve the trivial lower bounds and are therefore optimal. Although we have described the

algorithms primarily as theoretical devices (sacrificing efficiency for ease of analysis), the

discussion in Section 6 described how they can be efficiently implemented on a random

access computer.

Much further work remains to be done in developing fast expected-time algorithms for

closest-point problems. Can the expected complexity of computing minimum spanning trees in

k-space be reduced from 0(n log log n) to 0(n)? A particularly important problem is to

extend our results from bounded distributions to unbounded distributions (the multivariate

normal, for example). It appears that new algorithms will have to be developed for this

problem, taking special care of "outliers". Another very interesting open problem is to

"describe precisely how much of the efficiency of our algorithms is gained from probabilistic

assumptions and how much is gained by use of the floor function. (The recent paper of

Fortune and Hopcroft [19791 shows that floor can be used to speed up the computation of

closest pair without making the randomization assumptions of Robin (1976] and Weide

3 March 1979 Optimal Expected-Tim. - 15 -

[1978].)

Acknowledgements

Helpful conversations with James B. Saxe and Professor Michael Ian Shamos are gratefully

acknowledged.

References

Bentley, J. L. [1976] Divide and conquer algorithms for closest point problems in

multidimensional space, Ph.D. Thesis, University of North Carolina, Chapel Hill, North Carolina

(December 1976).

Bentley, J. L. and J. H. Friedman (19781 "Fast algorithms for constructing minimal spanning

trees in coordinate spaces," IEEE Transactions on Software Englnesring C-27, 2 (February

1978), pp. 97-105.

Cheriton, D. and R. E. Tarjan [1976] "Finding minimum spanning trees," SIAM J. Computing

5, 4 (December 1976), pp. 724-742.

Dobkin, D. and R. J. Lipton (1976]. "Multidimensional searching problems," SIAM J.

Computing 5, 2 (June 1976), pp. 181-186.

Fortune, S. and J. E. I- pcroft (1978]. "A note on Robin's nearest-neighbor algorithm,"

Information Processing Letters 8, 1 (January 1979), pp. 20-23.

Friedman, J. H., J. L. Bentley, and R. A. Finkel [19771 "An algorithm for finding best

matches in logarithmic expected time," ACM Transactions on Mathematical So.ftwore 3, 3

(September 1977), pp. 209-226.

Knuth, 0. E. (1968]. The Art of Computer Programming, VoLume One: FundarnentAl

Algorithms, Addison-Wesley, Reading, Mass.

Lipton, R. J. and R. E. Tarjan [19771 "App:ication of a planar separator theorem,"

Lighteenth Symposium on the Foundations of Computer Science (October 1977), IEEE, pp.

162-170.

Monier, L. [1978]. Personal communication of Louis Monler of the Universite de Paris-Sud

to J. L. Bentley (June 1978).

Preparata, F. P. and Hong, S. J. (1977]. "Convex hull of finite sets of points In two and

three dimensione," CACM 20, 2 (February 1977), pp. 87-93.

'Ii

3 March 1979 Optimal Expected-Time 16-

Rabin, M. 0. (19761 "Probabilistic algorithms," in Algorithmn and compLesity: New
directions and recent results, pp. 21-39, (Ed. . F. Traub), Academic Press, 1976.

Rohlf, F. J. [1978]. "A probabilistic minimum spanning tree algorithm," Information

Processing Letters 7, 1 (January 1978), pp. 44-48.

Shamos, M. I. and D. Hoey [1975]. "Closest-point problems," Sixteenth Symposium on the

Foundations of Computer Science (October 1975), IEEE, pp. 151-162.

Shamos, M. I. [19781 Computational Geometry, Ph.D. Thesis, Yale University, New Haven,

Connecticut (May 1978).

Weide, B. W. [1978]. Statistical Methods in Algorithm Design and Analysis, Ph.D. Thesis,

Carnegie-Mellon University, Pittsburgh, Pennsylvania (August 1978). Appeared as CMU

Computer Science Report CMU-CS-78-142.

Yao, A. C. [1975]. "An O(lEI log log IVI) algorithm for finding minimum spanning trees,"

Information Processing Letters 4, 1 (September 1975), pp. 21-23.

Yao, A. C. [1977] On constructing minimum spanning trees in k-dimensional space and

related problems, Stanford Computer Science Department Report STAN-CS-77-642 (December

1977).

Yuval, G. (19761 "Finding nearest neighbors," Information Processing Letters 5, 3 (August

1976), pp. 63-65.

Ui:CL AS S ET IJ) ______ ~ ionLus/etle-y, Bruce _14"'^8 d
%IECrFtI~T' .LASSIVICATIO',A 0! ilSý P'ACE t147weri Dce-I f re& dt (ý4- " Jý..Q....Lr a'' __ -a

RE~PORTr ~tcLPAENTATION PAGE 11.OF O.P.EIC
1aEOIZUME . GovY ACCVLS$ION LIL r'S CAT AL'OG NUtJULR

fCMU-CS-79-111. --

APTIMAL j,.XPECTED-WME #CRTM O LSS- .* RMIFc. ORG. REP'ORT NulAtiEn

T.-AU 1S. CONITRACT OR GRANT NUMBER(s)

JL. Bentley, B.W. Weide and A.C. Yao N 14--7 6 -C- 90371

0. PERFORMING ORGANIZATION NA14E AND ADLDRLSS I i.HMELt:MFP! 7,ROI CCT. TASK~

Carnegie-Mellon University A~ OKUII~

Computer Science Departnment V
Pittsburgh, PA 15213

I.C0;NTh1_;.LINc, OFFICE NAME AND ADDRESS *

Office ofNaval Research

____ __ ____ _ _ ____ ___20

1,MONITORING AGENCY NAML & AOORESSC~t ditlerant from Centra'Onga Office) 15. StC.uRITY CLASS. (of (thi tepott)

MCL&SSIFTFD
Same a~q above .SMEOL

16. DISTRII3UTION STATE.MUNT (of this Reporct)

Approved for public release; distribution unlimited.

11. DISTRiBUTION STATEMILNT (of the abstract entered In Block 20c, If difforenti from Report)

IS. SUPPLEMENIARY NOT&ES

19. KEY WORDS (Continue on reverse side if acfeeearv and Identify bay block njuwber;

20. ADSTnACT (Continue an rever.. side It necessary anid Iddntifty bay block number)

DID 'J'N 7 1473 E9DITION! OF I NOV GS65 IUS 0OLETEI UNCLASSIVFBID
S/N 0102 (014 -601 1

SECURITY CLAssirICAT ION Or INIS PAGE (When Date Anieerd)

